Nitrone Cycloaddition: An Approach to the Cyclophane Alkaloid (\pm)-Lythranidine ${ }^{1}$

(The late) William Carruthers, ${ }^{a}$ Peter Coggins ${ }^{*, a}$ and John B. Weston ${ }^{b}$
${ }^{\text {a Chemistry Department, The University, Stocker Road, Exeter EX4 4QD, UK }}$
${ }^{\text {b }}$ Wel/come Research Laboratories, Ravens Lane, Berkhamsted, Herts. HP4 2DY, UK

Abstract

The synthesis of (\pm)-lythranidine 1, a cyclophane alkaloid from Lythrum anceps Makino, involves three interesting problems. These are the construction of the 17-membered ring, the formation of the trans-2,6-dialkylpiperidine and the establishment of the correct relative stereochemistry at the four asymmetric centres (C-3, C-5, C-9, C-11). In our approach to the synthesis of this alkaloid, the trans-dialkylpiperidine was formed via a nitrone cycloaddition reaction. Cyclisation to give the 17-membered ring was achieved using tris(triphenylphosphine)nickel(0), prepared in situ from bis(triphenylphosphine) nickel dichloride, and the di-iodide 9. Deprotection of macrocyclic biaryl 10 gave the (C-3, C-11) epimer of (\pm)-lythranidine.

Over 40 alkaloids have been isolated from the Lythraceae family of plants. ${ }^{1}$ They have been classified into five structural types, ${ }^{2}$ representative alkaloids of which are shown in structures A-E.
The laboratory synthesis of (\pm)-lythranidine 1, an alkaloid extracted from Lythrum anceps Makino, involves three interesting problems. These are the construction of the 17membered ring, the formation of the trans-2,6-dialkylpiperidine and the establishment of the correct relative stereochemistry at the four asymmetric centres (C-3, C-5, C-9, C-11). To date only one synthesis of (\pm)-lythranidine has been published. ${ }^{3}$
In our approach, we proposed to set up the trans-2,6dialkylpiperidine of lythranidine by using a nitrone cycloaddition reaction. Formation of the biaryl linkage to give the 17 -membered ring would occur at a later stage in the synthesis. An additional feature to this approach is that the cycloaddition of nitrones to alkenes gives ultimately 1,3 -amino alcohols in a stereocontrolled fashion. Epimerisation of the alcohols would therefore furnish the natural product.
exo-Addition ${ }^{4}$ of 4 -(p-benzyloxyphenyl)but-1-ene \dagger to 3,4,5,6-tetrahydropyridine 1 -oxide in boiling chloroform smoothly gave the isoxazolidine 2. Oxidation with m chloroperoxybenzoic acid (MCPBA) gave a mixture of isomeric nitrones. Subsequent cycloaddition with 4-(p-benzyloxyphenyl)-but-1-ene afforded the isoxazolidine $\mathbf{3}$ in 31% yield.

Earlier work has established ${ }^{4}$ that cycloaddition of terminal alkenes to $2,3,4,5$-tetrahydropyridine 1 -oxide takes place in the exo-mode leading, by analogy, to the stereochemistry shown in structure 2. These isoxazolidines, when treated with MCPBA, give a mixture of isomeric nitrones. ${ }^{5}$ This contrasts with the observation by Tufariello et al..4 that isoxazolidines prepared from Δ^{1}-pyrroline 1 -oxides could be oxidised with MCPBA to give exclusively one regioisomer (Scheme 1). Oxidation of these isoxazolidines with MCPBA, followed by cycloaddition with a terminal alkene, however, has been shown to give the transsubstituted piperidine.
Reductive cleavage of the $\mathrm{N}-\mathrm{O}$ bond with zinc/ $10 \mathrm{~mol} \mathrm{dm}^{-3}$ acetic acid yielded the symmetrical dialkylpiperidine 4. Benzoylation of the nitrogen and acetylation of the hydroxy groups gave the fully protected amido diacetate 5 .
Of the methods available for forming a bond between two aromatic rings, ${ }^{6}$ the Ullmann reaction ${ }^{7}$ has been one of the
\dagger An analogous study using 4-(p-methoxyphenyl)but-1-ene proved unsuccessful, giving a complex mixture in the cycloaddition reaction following the MCPBA oxidation.

1 A Lythranidine

C Lythrine

B Lythrancine-1

D Lagerine

E Abresoline
most widely used. The traditional reaction conditions consist of heating an aryl halide in the presence of finely divided copper without solvent at high temperature. The high temperatures needed for this reaction reduce its utility for the synthesis of complex natural products. The use of zero-valent nickel in place of copper, on the other hand, has been reported to give biaryls in high yield at low temperatures $\left(\sim 50^{\circ} \mathrm{C}\right),{ }^{8}$ and it is by this method that we proposed to form the biaryl bond in our synthesis of (\pm)-lythranidine. The conventional Ullmann

Scheme 1 Reagent: i, MCPBA
reaction, and its low-temperature variants, results in the biaryl bond being formed at the position from which the halide is displaced. We therefore needed to prepare the di-iodide 7.
Treatment of compound 5 with thallium(III) trifluoroacetate in trifluoroacetic acid (TFA) followed by aqueous KI^{9} gave an intractable tar. A model study using 4-benzyloxytoluene also gave no identifiable products although treatment of 4-methoxytoluene in a similar fashion gave 3-iodo-4-methoxytoluene in 5% yield. It is likely that the strong mineral acid used as solvent for this reaction is responsible for the decomposition observed. Reaction of 4-benzyloxy- and 4-methoxy-toluene with silver(I) trifluoroacetate and iodine in dichloromethane gave the 3-iodoaromatic in 54 and 56% yield, respectively. The silver(I) trifluoroacetate/iodine method therefore seemed the most promising for our purposes.
Treatment of compound 5 with silver(I) trifluoroacetate/ iodine (4 mol equiv.) for 40 h at room temperature gave the mono-iodinated product 6 in 81% yield. The availability of this product led us to consider other methods used to form biaryl bonds. Photolysis of aryl iodides has been reported to give biaryls ${ }^{10}$ in moderate yield. Irradiation of compound 6 in acetonitrile gave the biaryl in low yield, together with considerable decomposition. Treatment of compound 5 with 10 mol equiv., or compound 6 with another 4 mol equiv., of silver(I) trifluoroacetate/iodine afforded the di-iodide 7.

Reaction of the di-iodide with the zero-valent nickel complex, formed by the reduction of bis(triphenylphosphine)nickel dichloride with zinc in the presence of triphenylphosphine, resulted in de-iodination to give compound 5 in 54% yield. The observation of de-iodination implies that the intermediate diarylnickel complex formed but that closure to give the macrocycle was slow, possibly due to steric hindrance of the benzyl protecting groups. In order to lower steric hindrance we turned our attention to the methyl-protected amido diacetate 8 .
Hydrogenolysis of the benzyl protecting groups in compound 5 and methylation of the resulting diphenol gave compound $\mathbf{8}$ in 96% overall yield. Treatment of compound 8 with 8 mol equiv. of silver(I) trifluoroacetate/iodine gave di-iodide 9 in 83% yield. Reaction of this di-iodide with the zero-valent nickel complex at $55^{\circ} \mathrm{C}$ furnished a mixture of biaryl $10(55 \%)$, de-iodinated material 8, and mono- and di-iodinated compounds in trace amounts. ${ }^{13} \mathrm{C}$ NMR spectroscopy showed the biaryl to be a mixture of isomers (due to the chiral biaryl axis) in the ratio 3:1.
Treatment of compound 10 with methanolic potassium carbonate gave the crystalline macrocyclic amido diol 11 in 99% yield as a mixture of isomers. Recrystallisation from dichloromethane/light petroleum, however, gave a single compound, as seen by NMR spectroscopy. Treatment of this compound with diethyl azodicarboxylate (DEAD), triphenylphosphine and either benzoic, formic or acetic acid in diethyl ether or dichloromethane afforded the starting material 11 as well as diethyl hydrazinedicarboxylate and triphenylphosphine oxide. The latter two compounds are by-products of the

Mitsunobu inversion procedure, ${ }^{11}$ and so partial inversion may have occurred.
Reduction of compound 11 with LiAlH_{4} and hydrogenolysis gave the amino diol 12. Treatment of compound $\mathbf{1 0}$ with diisobutylaluminium hydride (DIBAL) (with a view to fully deprotecting the amido diacetate in one step ${ }^{12}$) gave a product corresponding to 11 (TLC). Interestingly, treatment of the crude product from this reaction with LiAlH_{4} and hydrogenolysis as above resulted in monodemethylation to give the (C-3, C-11) epimer of (\pm)-lythranidine, compound 13 (Scheme 2).

Experimental

$250 \mathrm{MHz}{ }^{1} \mathrm{H}$ and $62.9 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker AM 250 spectrometer. J-Values are given in Hz . Short-column chromatography ${ }^{13}$ and dry-column flash chromatography used Merck Kieselgel 60H (Merck No. 7736), and flash chromatography ${ }^{14}$ used Camlab Kieselgel 60, $230-$ 400 mesh. IR spectra were recorded with a Perkin-Elmer 881 spectrometer, as liquid films unless otherwise stated. Highresolution accurate mass spectra were determined at the SERC Mass Spectroscopy Centre, University College, Swansea. Light petroleum refers to that fraction boiling in the range $40-60^{\circ} \mathrm{C}$.
trans-8-[2-(p-Benzyloxyphenyl)ethyl]-9-oxa-1-azabicyclo[4.3.0] nonane 2.-A solution of N-hydroxypiperidine $(3.47 \mathrm{~g}, 34$ mmol) in dry dichloromethane ($30 \mathrm{~cm}^{3}$) was stirred with yellow mercury(II) oxide ($24.7 \mathrm{~g}, 114 \mathrm{mmol}$) for 30 min . Magnesium sulphate (2.5 g) was added and the slurry was filtered through a plug of Celite and MgSO_{4} with the aid of dichloromethane (130 cm^{3}). The solvent was removed under reduced pressure and was replaced with chloroform ($50 \mathrm{~cm}^{3}$). The solution was treated with 4-(4-benzyloxyphenyl)but-1-ene ($1.88 \mathrm{~g}, 7.8 \mathrm{mmol}$) and refluxed under nitrogen for 24 h , after which the cooled solution was washed successively with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(100 \mathrm{~cm}^{3}\right)$ and saturated aq. $\mathrm{NaHCO}_{3}\left(100 \mathrm{~cm}^{3}\right)$, dried over MgSO_{4}, filtered, and evaporated. Chromatography over flash silica and elution with $10-50 \%$ ether-hexane gave the product $2(2.16 \mathrm{~g}, 81 \%)$ as a pale yellow oil, which solidified on storage; $v_{\text {max }} / \mathrm{cm}^{-1} 3034$, $2859,1613,1585,1513,1455,1028,834,731$ and $696 ; \delta_{\mathbf{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.59-2.15(10 \mathrm{H}, \mathrm{m}), 2.15-2.39(1 \mathrm{H}$, app q), $2.39-$ $2.58(1 \mathrm{H}, \mathrm{m}), 2.58-2.87(3 \mathrm{H}, \mathrm{m}), 3.37-3.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.00-4.19$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.88$ and $7.11(4 \mathrm{H}, \mathrm{ABq}, \mathrm{ArH})$ and 7.20-7.65 ($5 \mathrm{H}, \mathrm{ArH}$) [Found: C, 78.0 ; H, 8.1 ; N, 4.15%; $\left(\mathrm{M}^{+}+1\right), 338 . \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires $\mathrm{C}, 78.3 ; \mathrm{H}, 8.06 ; \mathrm{N}, 4.15 \%$; $\left.\left(\mathrm{M}^{+}+1\right), 338\right]$.
$\left(2 \mathrm{R}^{*}, 6 \mathrm{R}^{*}, 8 \mathrm{R}^{*}\right)-8-\left[2-(\mathrm{p}-\right.$ Benzyloxyphenyl)ethyl $]-2-\left[\left(2^{\prime} \mathrm{R}^{*}\right)-4-\right.$ (p -benzyloxyphenyl)-2-hydroxybutyl]-9-oxa-1-azabicyclo-
[4.3.0]nonane 3.-To a stirred solution of the isoxazolidine 2 ($5.85 \mathrm{~g}, 17.3 \mathrm{mmol}$) in dichloromethane ($100 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ was added a solution of MCPBA ($80 \% ; 3.74 \mathrm{~g}, 17.3 \mathrm{mmol}$) in dichloromethane ($70 \mathrm{~cm}^{3}$) during 20 min . After the addition the mixture was stirred at room temp. for 1 h . The solution was washed with saturated aq. $\mathrm{NaHCO}_{3}\left(2 \times 100 \mathrm{~cm}^{3}\right)$, dried over MgSO_{4}, filtered and evaporated. Chloroform ($50 \mathrm{~cm}^{3}$) and 4-(4-benzyloxyphenyl)but-1-ene ($6.78 \mathrm{~g}, 28 \mathrm{mmol}$) was added and the solution was refluxed under nitrogen for 40 h . Chromatography over 60 H silica and elution with hexane -80% diethyl ether-hexane gave the isoxazolidine $\mathbf{3}$ as a solid $(3.32 \mathrm{~g}$, 31.3%). Recrystallisation from ethyl acetate-light petroleum gave an amorphous powder (m.p. $107-108^{\circ} \mathrm{C}$); $v_{\text {max }}(\mathrm{KBr}$ disc) $/ \mathrm{cm}^{-1} 3337,3033,2918,1609,1582,1381,1241,1075,906$, 738 and $696 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.19-2.16(13 \mathrm{H}, \mathrm{m}), 2.21-$ 2.46 ($1 \mathrm{H}, \mathrm{app}$ q), 2.49-3.00 ($5 \mathrm{H}, \mathrm{m}$), 3.49-3.73 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$), $3.86-$ $4.14(1 \mathrm{H}, \mathrm{m}), 4.16-4.41(1 \mathrm{H}, \mathrm{m}), 4.65-4.97(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{OH}), 5.08$ $\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{PhCH}_{2}\right), 6.92$ and $7.13(8 \mathrm{H}, 2$ overlapping ABq ,

2

$6 \mathrm{R}=\mathrm{I}, \mathrm{R}^{\prime}=\mathrm{H}$
$7 \mathrm{R}=\mathrm{R}^{\prime}=1$

vii,vi

ix $\begin{aligned} 10 R & =B z, R^{\prime}=A c \\ \times & 11 R=B z, R^{\prime}=H \\ \times-12 R & =R^{\prime}=H\end{aligned}$

$10 \mathrm{R}=\mathrm{Bz}, \mathrm{R}^{\prime}=\mathrm{Ac}$
$\mathrm{CH}), 134.11,135.18,137.30$ and $137.40(4 \times$ arom Cquat $)$ and 156.96 and 157.14 ($2 \times$ arom Cquat) (Found: C, $79.1 ; \mathrm{H}, 7.7 ; \mathrm{N}$, 2.4. $\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{NO}_{4}$ requires $\mathrm{C}, 79.15 ; \mathrm{H}, 7.66 ; \mathrm{N}, 2.37 \%$).
$\left(2 \mathrm{R}^{*}, 6 \mathrm{R}^{*}\right)-2,6-$ Bis-[(2R*)-4-(p-benzyloxyphenyl)-2-hydroxybutyl] piperidine 4.-The isoxazolidine $3(3.21 \mathrm{~g}, 5.42 \mathrm{mmol})$ and ethylenediaminetetraacetic acid ($13.11 \mathrm{~g}, 54 \mathrm{mmol}$) were dissolved in an ethanol $\left(160 \mathrm{~cm}^{3}\right)-10 \mathrm{~mol} \mathrm{dm}^{-3}$ acetic acid (160 cm^{3}) mixture and heated to reflux. Zinc dust ($2.82 \mathrm{~g}, 43 \mathrm{mmol}$) was added cautiously and the mixture was heated at reflux for 30 min . The cooled solution was neutralised with aq. $\mathrm{NH}_{4} \mathrm{OH}(d$ 0.880) and extracted with chloroform $\left(5 \times 200 \mathrm{~cm}^{3}\right)$. The organic phase was dried over MgSO_{4}, filtered, and evaporated to give a solid. Recrystallisation from ethyl acetate-light petroleum gave the product 4 as an amorphous powder (2.37 g , 74%) (m.p. $110-112^{\circ} \mathrm{C}$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3368,2926,2856$, $1610,1582,1174,1023,822,738$ and $696 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.11-1.51 ($4 \mathrm{H}, \mathrm{m}$), 1.51-2.11 ($10 \mathrm{H}, \mathrm{m}$), 2.46-3.05 ($4 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{ArCH}_{2}\right), 3.05-4.19(5, \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{NH}, 2 \times \mathrm{CHN}, 2 \times$ $\mathrm{CHOH}), 5.05\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{PhCH}_{2}\right), 6.94$ and $7.16(8 \mathrm{H}, \mathrm{ABq}$, $\mathrm{ArH})$ and $7.27-7.73(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 19.96, 31.57, 32.06, 39.10, $39.60\left(5 \times \mathrm{CH}_{2}\right), 47.29(\mathrm{CH}), 68.56$ $(\mathrm{CH}), 70.14\left(\mathrm{PhCH}_{2}\right), 114.89$ (arom CH ortho to OBn), 127.46, 127.86, 128.55 and $129.36(4 \times$ arom CH$)$ and $134.83,137.35$ and 157.06 ($3 \times$ arom Cquat) [Found: C, $79.0 ; \mathrm{H}, 7.8 ; \mathrm{N}, 2.4 \%$; $\left(\mathrm{M}^{+}+1\right), 594 . \mathrm{C}_{39} \mathrm{H}_{47} \mathrm{NO}_{4}$ requires $\mathrm{C}, 78.89 ; \mathrm{H}, 7.98 ; \mathrm{N}, 2.36 \%$; $\left.\left(\mathrm{M}^{+}+1\right), 594\right]$.
$\left(2 \mathrm{R}^{*}, 6 \mathrm{R}^{*}\right)$-1-Benzoyl-2,6-bis-[(2R*)-4-(p-benzylhydroxy-phenyl)-2-hydroxybutyl]piperidine 4a.-A solution of amino diol $4(2.68 \mathrm{~g}, 4.5 \mathrm{mmol})$ in benzene $\left(50 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was stirred and treated with triethylamine ($0.69 \mathrm{~cm}^{3}, 1.1 \mathrm{~mol}$ equiv.) and benzoyl chloride ($0.52 \mathrm{~cm}^{3}, 1.1 \mathrm{~mol}$ equiv.) under nitrogen for 8 h. The solution was washed successively with $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ $\left(2 \times 100 \mathrm{~cm}^{3}\right)$ and saturated aq. $\mathrm{NaHOC}_{3}\left(2 \times 100 \mathrm{~cm}^{3}\right)$, dried over MgSO_{4}, filtered and evaporated. Chromatography over 60 H silica and elution with chloroform gave the amide $\mathbf{4 a}$ (1.716 $\mathrm{g}, 55 \%$). Another component ($1.1 \mathrm{~g}, 31 \%$), identified as the amido monobenzoate, was also isolated. This was treated with methanolic KOH to give the amide $\mathbf{4 a}$ (824 mg , overall yield $2.54 \mathrm{~g}, 81 \%$; ; $v_{\text {max }} / \mathrm{cm}^{-1} 3408,3064,2865,1608,1510,1453,1413$, 830,739 and $696 ; \delta_{\mathbf{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.35-2.22(14 \mathrm{H}, \mathrm{m})$, 2.32-2.89 (4 H , br s), 3.11-3.65 (2 H , br s), $3.89-4.46$ (2 H , br s), $5.05\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{PhCH}_{2}\right), 6.92$ and $7.08(8 \mathrm{H}, \mathrm{ABq}, \mathrm{ArH})$ and $7.19-7.60(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(62.9, \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 16.18,27.26$, 30.91, 39.07 and $41.84\left(5 \times \mathrm{CH}_{2}\right), 67.60(\mathrm{br} \mathrm{CH}), 70.12$ $\left(\mathrm{PhCH}_{2}\right), 114.85(\mathrm{CH}$ ortho to OBn$), 126.59-129.56(6 \times$ arom $\mathrm{CH}), 134.43,137.25,137.81$ and $157.09(4 \times$ arom Cquat $)$ and $174.0(\mathrm{C}=\mathrm{O})$ (Found: $\mathrm{C}, 79.2 ; \mathrm{H}, 7.4 ; \mathrm{N}, 2.0 . \mathrm{C}_{46} \mathrm{H}_{51} \mathrm{NO}_{5}$ requires $\mathrm{C}, 79.50 ; \mathrm{H}, 7.32 ; \mathrm{N}, 2.06 \%$)
($\left.2 \mathrm{R}^{*}, 6 \mathrm{R}^{*}\right)-2,6-\mathrm{Bis}-\left[\left(2 \mathrm{R}^{*}\right)\right.$-2-acetoxy-4-(p -benzyloxyphenyl)-butyl]-1-benzoylpiperidine 5.-A solution of amido diol 4a (570 $\mathrm{mg}, 0.82 \mathrm{mmol}$) in dry pyridine ($20 \mathrm{~cm}^{3}$) was treated with acetic anhydride ($2 \mathrm{~cm}^{3}, 21 \mathrm{mmol}$) and 4-dimethylaminopyridine (DMAP) ($60 \mathrm{mg}, 0.5 \mathrm{mmol}$). The solution was stirred under nitrogen for 24 h . Chloroform ($50 \mathrm{~cm}^{3}$) was added and the solution was washed successively with $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(100$ cm^{3}), saturated aq. $\mathrm{NaHCO}_{3}\left(100 \mathrm{~cm}^{3}\right)$, water $\left(50 \mathrm{~cm}^{3}\right)$ and saturated brine ($100 \mathrm{~cm}^{3}$), dried over MgSO_{4}, filtered and evaporated. Chromatography over 60 H silica and elution with chloroform gave the amido acetate 5 as a pale yellow oil (614 $\mathrm{mg}, 96 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3034,2935,2865,1728,1638,1610,1582$, $1509,1026,736$ and $697 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.46-1.95(10 \mathrm{H}$, $\mathrm{m}), 1.95-2.19(2 \mathrm{H}, \mathrm{m}), 2.05(6 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.19-2.81(6 \mathrm{H}, \mathrm{m})$, 3.46-3.76 (2 H , br $\mathrm{s}, 2 \times \mathrm{CHN}$), $4.76-4.97(2 \mathrm{H}$, br s , $2 \times \mathrm{CHOAc}), 5.03\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{PhCH}_{2}\right), 6.92$ and $7.05(8 \mathrm{H}$, $\mathrm{ABq}, \mathrm{ArH})$ and $7.16-7.76(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$
$19.11\left(\mathrm{CH}_{2}\right), 21.27(\mathrm{OAc}), 28.19,30.37,36.12$ and 36.90 $\left(4 \times \mathrm{CH}_{2}\right), 52.92(\mathrm{br}, \mathrm{CH}), 70.10\left(\mathrm{PhCH}_{2}\right), 71.86(\mathrm{br} \mathrm{CH})$, 114.89 (arom CH ortho to OBn), 133.82, 137.32, 137.83 and 157.12 ($4 \times$ arom Cquat), $170.00(\mathrm{C}=\mathrm{O}$, acetate) and 173.00 (C $=\mathrm{O}$, amide) (Found: M^{+}, 782.4053. $\mathrm{C}_{50} \mathrm{H}_{55} \mathrm{NO}_{7}$ requires M , $782.40564)$.

Iodination of Amino Diacetate 5.-A solution of amido diacetate 5 ($331 \mathrm{mg}, 0.42 \mathrm{mmol}$) in dry dichloromethane (10 cm^{3}) was treated with silver trifluoroacetate ($410 \mathrm{mg}, 1.84$ mmol). The slurry was stirred under nitrogen for 10 min . A solution of iodine ($241 \mathrm{mg}, 1.9 \mathrm{mmol}$) in chloroform ($14 \mathrm{~cm}^{3}$) was added dropwise during 10 min . The resulting pale yellow slurry was stirred under nitrogen for 40 h at room temperature. The slurry was filtered through a plug of Celite with the aid of chloroform, and evaporated to give a brown glass. Chromatography over 60 H silica and elution with 50% ethyl acetatedichloromethane gave the mono-iodinated compound $\mathbf{6}(313 \mathrm{mg}$, $81 \%) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.41-1.86(10 \mathrm{H}, \mathrm{m}), 2.03(6 \mathrm{H}, \mathrm{s}$, OAc), 1.86-2.19 (3 H, m), 2.19-2.65 ($6 \mathrm{H}, \mathrm{m}$), 3.46-3.70 (2 H , br s), 4.73-4.95 ($2 \mathrm{H}, \mathrm{br}$ s), $5.00\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{PhCH}_{2}\right.$) $6.73(2 \mathrm{H}, \mathrm{d}, J$ 12.2), $6.86(1 \mathrm{H}, \mathrm{d}, J 12$, CH meta to iodine), $6.95-7.08(3 \mathrm{H}, \mathrm{m}$, arom including CH para to iodine), 7.19-7.49 ($15 \mathrm{H}, \mathrm{ArH}$) and $7.54\left(1 \mathrm{H}, \mathrm{d}, J 2.7, \mathrm{CH}\right.$ ortho to iodine); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$), $19.10\left(\mathrm{CH}_{2}\right), 21.29(2 \times \mathrm{OAc}), 28.21,30.10,30.57,35.88(\times 2)$ and $36.89\left(6 \times \mathrm{CH}_{2}\right), 52.76(2 \times \mathrm{br}, \mathrm{CH}, \mathrm{CHNCH}), 70.02$ and $70.96(2 \times \mathrm{PhCH} 2), 71.74$ and $71.96(2 \times \mathrm{CHOAc}), 86.85(\mathrm{CI})$, 112.80 (arom CH ortho to OBn on iodinated ring), 114.87 (arom CH ortho to OBn), 126.94-129.98 ($10 \times$ arom CH), $133.74,136.08,136.73,137.31$ and 137.84 ($5 \times$ arom Cquat), 139.09 (CH ortho to iodine), 155.53 and 157.09 (arom Cquat), 170.45 ($\mathrm{C}=\mathrm{O}$, acetate) and 173.78 ($\mathrm{C}=\mathrm{O}$, amide) [Found: $\left(\mathrm{M}^{+}+1\right), \quad 908.2976$ (FAB). $\mathrm{C}_{50} \mathrm{H}_{55} \mathrm{NIO}_{7}$ requires m / z, 908.302 327].

Photolysis of Compound 6.-A solution of compound 6 (50 $\mathrm{mg}, 0.05 \mathrm{mmol}$) in dry acetonitrile $\left(2 \mathrm{~cm}^{3}\right)$ was irradiated in a quartz cell with a 400 W bulb for 2.5 h . Solvent was removed under reduced pressure. Chromatography over 60 H silica and elution with 5% ethyl acetate-dichloromethane gave the biaryl $(5 \mathrm{mg}, 12 \%) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.05(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OAc}), 1.43-$ $2.19(12 \mathrm{H}, \mathrm{m}), 2.19-2.89(6 \mathrm{H}, \mathrm{m}), 3.46-3.78(2 \mathrm{H}$, br s, CH NCH), $4.70-5.00(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CHOAc}), 5.14(4 \mathrm{H}, \mathrm{s}$, $\left.2 \times \mathrm{PhCH}_{2}\right)$ and $6.81-7.89(21 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$, $19.11\left(\mathrm{CH}_{2}\right), 21.28(\mathrm{OAc}), 28.19,30.53,30.98,36.15$ and 36.92 $\left(5 \times \mathrm{CH}_{2}\right), 52.89(2 \times \mathrm{br}, \mathrm{CH}, \mathrm{CHNCH}), 68.49\left(2 \times \mathrm{PhCH}_{2}\right)$, 71.97 (C HOAc), $117.20,122.01,122.99,124.60,126.93,127.55$, 128.37, 128.61 and $129.30(9 \times$ arom CH), 130.20, 131.51, $135.00,137.74$ and $153.01(5 \times$ arom Cquat), $170.57(\mathrm{C}=\mathrm{O}$, acetate) and $173.87\left(\mathrm{C}=\mathrm{O}\right.$, amide) [Found: $\left(\mathrm{M}^{+}+1\right)$, 780.3901024 (FAB). $\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{NO}_{7}$ requires $m / z, 780.389$ 99].
($\left.2 \mathrm{R}^{*}, 6 \mathrm{R}^{*}\right)$-2,6-Bis-[(2R*)-2-acetoxy-4-(4-benzyloxy-3-iodo-phenyl)butyl]-1-benzoylpiperidine 7.-Silver trifluoroacetate ($5.5 \mathrm{~g}, 25 \mathrm{mmol}, 10.4 \mathrm{~mol}$ equiv.) was added in one portion to a solution of the amido diacetate $5(1.87 \mathrm{~g}, 2.4 \mathrm{mmol})$ in dry dichloromethane ($50 \mathrm{~cm}^{3}$) and the mixture was stirred under nitrogen for 5 min . A solution of iodine ($1.724 \mathrm{~g}, 13.6 \mathrm{mmol}, 5.6$ mol equiv.) in chloroform ($100 \mathrm{~cm}^{3}$) was added dropwise during 40 min . The slurry was stirred for 48 h and then filtered through a plug of Celite with the aid of dichloromethane ($500 \mathrm{~cm}^{3}$). The solvent was removed to give a brown foam. Chromatography over 60 H silica and elution with 5% ethyl acetate-dichloromethane gave the product 7 as a foam ($1.496 \mathrm{~g}, 60 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 2967, 2930, 2672, 1771, 1728, 1644, 1522, 946, 907 and 812 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.43-1.84(10 \mathrm{H}, \mathrm{m}), 1.84-2.00(2 \mathrm{H}, \mathrm{m})$, $2.08(6 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.11-2.41(2 \mathrm{H}, \mathrm{m}), 2.41-2.70(4 \mathrm{H}, \mathrm{m}), 3.43-$ $3.76(2 \mathrm{H}, \mathrm{brs}, \mathrm{CH} \mathrm{NCH}), 4.67-5.00(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CHOAc})$,
$5.11\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{PhC} H_{2}\right), 6.76(2 \mathrm{H}, \mathrm{d}, J 12.3, \mathrm{CH}$ meta to I$)$, 7.00 ($2 \mathrm{H}, \mathrm{dd}, J$ 12.3, 2.7, CH para to I), $7.19-7.67$ ($15 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.54\left(2 \mathrm{H}, \mathrm{d}, J 2.7\right.$, arom CH ortho to I); $\delta_{\mathrm{C}}(62.9 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 18.96\left(\mathrm{CH}_{2}\right), 21.24(\mathrm{OAc}), 28.07,30.08,35.86$ and 36.93 $\left(4 \times \mathrm{CH}_{2}\right), 52.75(\mathrm{br}, \mathrm{CH}, \mathrm{CHNCH}), 71.08\left(\mathrm{PhCH}_{2}\right), 71.82$ (CHOAc), $86.85(\mathrm{CI}), 112.83$ (CH meta to I), 126.90, 127.04, 127.83, 128.52 and $128.70(5 \times$ arom CH$), 129.22(\mathrm{CH}$ para to I), 129.97 (arom. CH), 136.11, 136.72 and $137.79(3 \times$ arom Cquat), 139.12 (CH ortho to I), 155.58 (arom Cquat), 170.50 ($\mathrm{C}=\mathrm{O}$, acetate) and 173.78 ($\mathrm{C}=\mathrm{O}$, amide) [Found: $\left(\mathrm{M}^{+}+1\right.$), 1034.198803 (FAB). $\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{NI}_{2} \mathrm{O}_{7}$ requires $m / z, 1034.198$ 936].

Attempted Cyclisation of Compound 7.-Bis(triphenylphosphine)nickel dichloride ($90 \mathrm{mg}, 0.13 \mathrm{mmol}$), zinc ($60 \mathrm{mg}, 1$ mmol), and triphenylphosphine ($70 \mathrm{mg}, 0.26 \mathrm{mmol}$) were placed in an oven-dried Schlenk tube. N, N-Dimethylformamide (DMF) ($5 \mathrm{~cm}^{3}$) was added and the Schlenk tube was evacuated and filled with nitrogen three times. The flask was heated to $50^{\circ} \mathrm{C}$ for 30 min during which time the solution became dark red (from deep blue). The substrate ($104 \mathrm{mg}, 0.1 \mathrm{mmol}$) in DMF $\left(5 \mathrm{~cm}^{3}\right)$ was added under nitrogen pressure and the solution was stirred under nitrogen at $50^{\circ} \mathrm{C}$. After 90 min the solution became pale green although overnight the dark red solution reappeared. After 22 h the solution was poured into $2 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{HCl}\left(50 \mathrm{~cm}^{3}\right)$ and extracted with chloroform ($3 \times 50 \mathrm{~cm}^{3}$). The extracts were diluted with diethyl ether ($100 \mathrm{~cm}^{3}$), and the organic phase was washed successively with water ($100 \mathrm{~cm}^{3}$) and saturated brine ($100 \mathrm{~cm}^{3}$), dried over MgSO_{4}, filtered, and evaporated. Chromatography over 60 H silica and elution with 5% ethyl acetate-dichloromethane gave the amido acetate 5 .
(2R*,6R*)-2,6-Bis-[(2R*)-2-acetoxy-4-(p-methoxyphenyl)-butyl]-1-benzoylpiperidine $\mathbf{8}$.-A solution of amido diacetate 7 $(1.838 \mathrm{~g}, 2.35 \mathrm{mmol}$) in 50% methanol-diethyl ether mixture (50 cm^{3}) was hydrogenated over $5 \% \mathrm{Pd} / \mathrm{C}(200 \mathrm{mg})$ at atmospheric pressure for 90 min . The slurry was filtered through a plug of Celite with the aid of diethyl ether. The solvent was removed and replaced with acetone ($60 \mathrm{~cm}^{3}$). $\mathrm{K}_{2} \mathrm{CO}_{3}(5 \mathrm{~g})$ and iodomethane ($3 \mathrm{~cm}^{3}, 48 \mathrm{mmol}$) and the mixture was refluxed and stirred for 4 h . The acetone was removed under reduced pressure and replaced with chloroform ($50 \mathrm{~cm}^{3}$) and water (50 cm^{3}). The organic layer was separated and the aqueous layer was extracted with chloroform ($3 \times 50 \mathrm{~cm}^{3}$). The combined extracts were washed with brine, dried over MgSO_{4}, filtered, and evaporated. Chromatography over 60 H silica and elution with chloroform gave the product $8(1.425 \mathrm{~g}, 96 \%)$ as a foam; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3002,2942,1727,1632,1510,1442,1373$, 1239,1028 and $823 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.38-1.65(2 \mathrm{H}, \mathrm{m})$, $1.65-1.86(8 \mathrm{H}, \mathrm{m}), 1.86-1.97(2 \mathrm{H}, \mathrm{m}), 2.03(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OAc})$, 2.11-2.43 ($2 \mathrm{H}, \mathrm{brs}$), 2.43-2.70(4 H, m), 3.46-3.67 ($2 \mathrm{H}, \mathrm{brs}$), 3.81 $(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 4.67-5.00(2 \mathrm{H} \mathrm{br} \mathrm{s}), 6.78$ and $7.00(8 \mathrm{H}, \mathrm{ABq}$, ArH) and 7.27-7.54 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.08$ $\left(\mathrm{CH}_{2}\right), 21.23(\mathrm{OAc}), 28.16,30.50,36.13$ and $36.86\left(4 \times \mathrm{CH}_{2}\right)$, $52.85(\mathrm{br}, \mathrm{CH}), 55.23(\mathrm{OMe}), 71.96(\mathrm{CH}), 113.82(\mathrm{CH}$ ortho to OMe), 126.62, 128.62, 129.15 and $129.83(4 \times$ arom CH$), 133.46$ and $137.82(2 \times$ arom Cquat), 157.86 (arom. Cquat para to OMe), 170.53 ($\mathrm{C}=\mathrm{O}$, acetate) and 173.84 ($\mathrm{C}=\mathrm{O}$, amide) (Found: $\mathrm{M}^{+}, 629.335 . \mathrm{C}_{38} \mathrm{H}_{47} \mathrm{NO}_{7}$ requires $\mathrm{M}, 629.335$ 215).
($2 \mathrm{R}^{*}, 6 \mathrm{R}^{*}$)-2,6-Bis-[(2R*)-2-acetoxy-4-(3-iodo-4-methoxy-phenyl)butyl]-1-benzoylpiperidine 9.-Silver trifluoroacetate ($4.12 \mathrm{~g}, 18.6 \mathrm{mmol}, 8 \mathrm{~mol}$ equiv.) was added in one portion to a solution of amido acetate $8(1.476 \mathrm{~g}, 2.34 \mathrm{mmol})$ in dry dichloromethane ($50 \mathrm{~cm}^{3}$). After 5 min , a solution of iodine (2.38 $\mathrm{g}, 18.7 \mathrm{mmol}$) in chloroform ($100 \mathrm{~cm}^{3}$) was added and the mixture was stirred for 3 h at room temperature. The slurry was filtered through a plug of Celite with the aid of dichloromethane $\left(500 \mathrm{~cm}^{3}\right)$. Solvent was removed under reduced pressure and
chromatography over 60 H silica and elution with dichloro-methane- 5% ethyl acetate-dichloromethane gave the product 9 $(1.716 \mathrm{~g}, 83 \%)$ as a foam; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2973,1729,1630$, $1490,1439,1372,876$ and $707 ; \delta_{\mathbf{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.38-1.81$ $(10 \mathrm{H}, \mathrm{m}), 1.81-1.97(2 \mathrm{H}, \mathrm{m}), 2.03(6 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.11-2.57(6 \mathrm{H}$, m), 3.38-3.65 (2 H , br s), $3.81(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 4.57-5.05(2 \mathrm{H}$, br s), $6.65(2 \mathrm{H}, \mathrm{d}, J 12.1, \mathrm{CH}$ meta to I), $7.03(2 \mathrm{H}, \mathrm{dd}, J 12.1$ and 2.6, CH para to I), $7.24-7.43(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $5.51(2 \mathrm{H}, \mathrm{d}, J 2.6$ CH ortho to I); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.01\left(\mathrm{CH}_{2}\right), 21.27(\mathrm{OAc})$, $28.13,30.01,35.89$ and $36.87\left(4 \times \mathrm{CH}_{2}\right), 52.75(\mathrm{br}, \mathrm{CH}), 56.41$ (OMe), $71.73(\mathrm{CH}), 85.92(\mathrm{CI}), 110.94(\mathrm{CH}$ ortho to OMe$)$, $126.88,128.68,129.31$ and $129.95(4 \times$ arom CH$), 135.67$ and 137.78 ($2 \times$ arom Cquat), 139.01 (CH ortho to I), 156.42 (arom. Cquat), 170.45 ($\mathrm{C}=\mathrm{O}$, acetate) and $173.75(\mathrm{C}=\mathrm{O}$, amide) (Found: $\mathrm{M}^{+}, 881.1285573 . \mathrm{C}_{38} \mathrm{H}_{45} \mathrm{NI}_{2} \mathrm{O}_{7}$ requires $\mathrm{M}, 881.12851$).

Cyclisation of Compound 9.-Bis(triphenylphosphine)nickel dichloride ($418 \mathrm{mg}, 0.64 \mathrm{mmol}$), zinc ($70 \mathrm{mg}, 1 \mathrm{mmol}$), triphenylphosphine ($171 \mathrm{mg}, 0.65 \mathrm{mmol}$), and dry DMF (20 cm^{3}) were placed in a Schlenk tube, which was then evacuated and filled with nitrogen three times. The flask was heated to $50{ }^{\circ} \mathrm{C}$ for 30 min during which time the solution became dark red. A solution of the substrate ($250 \mathrm{mg}, 0.28 \mathrm{mmol}$) in DMF (5 cm^{3}) was added and the mixture was stirred under a flow of argon for 21 h at $50^{\circ} \mathrm{C}$. The cooled solution was evaporated to give a black oil, $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(150 \mathrm{~cm}^{3}\right)$ was added and the solution was extracted with diethyl ether $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The extracts were washed with brine ($100 \mathrm{~cm}^{3}$), dried over MgSO_{4}, filtered, and evaporated. Chromatography over 60 H silica and elution with dichloromethane- 5% diethyl ether-dichloromethane gave the biaryl $10(98 \mathrm{mg}, 55 \%)$ as a $3: 1$ mixture of diastereoisomers; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2932,2860,1723,1627$, 1499, 1446, 1024, 943 and $908 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.19-2.27 ($13 \mathrm{H}, \mathrm{m}$), $2.05(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OAc}), 2.27-3.11(5 \mathrm{H}, \mathrm{m}), 3.11-3.38$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$), $3.38-4.00(6 \mathrm{H}, 4 \mathrm{~s}, \mathrm{Me}), 4.00-4.32(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.46-$ $5.05(3 \mathrm{H} .3$ overlapping br s$)$ and $6.43-7.73(11 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(62.9$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 20.87 (br, OAc), 52.71 and 54.42 (br CH), 55.96 and 55.87 (OMe), 70.95, 71.95, 72.68 and 73.58 (CHOAc), $111.62,111.98$ and $113.82(\mathrm{CH}$ ortho to OMe), 137.44, 137.62 and 137.84 (Cquat, biaryl), $155.52,155.40$ and 155.78 (Cquat para to OMe$), 170.21,170.52,170.77$ and $171.32(\mathrm{C}=\mathrm{O}$, acetate) and 173.65 and $173.85\left(\mathrm{C}=\mathrm{O}\right.$, amide) (Found: $\mathrm{M}^{+}, 627.3195$. $\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{NO}_{7}$ requires $\mathrm{M}, 627.319$ 565).

Hydrolysis of Biaryl 10. $-\mathrm{K}_{2} \mathrm{CO}_{3}(2.5 \mathrm{~g})$ was added to a solution of the biaryl ($314 \mathrm{mg}, 0.5 \mathrm{mmol}$) in methanol ($50 \mathrm{~cm}^{3}$) and the solution was stirred for 18 h . The methanol was removed under reduced pressure and was replaced with chloroform ($50 \mathrm{~cm}^{3}$) and water $\left(50 \mathrm{~cm}^{3}\right)$. The organic phase was separated and the aq. phase was extracted with chloroform ($3 \times 50 \mathrm{~cm}^{3}$). The combined organics were washed with brine, dried over MgSO_{4}, and evaporated. Chromatography over 60 H silica and elution with chloroform gave the product 11 as a solid. Recrystallisation from dichloromethane-light petroleum gave an amorphous powder ($269 \mathrm{mg}, 99 \%$), m.p. $232-234^{\circ} \mathrm{C}$ (decomp.): $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3398,3023,2940,1633,1590$, $1501,1464,1134,1065,707$ and $647 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right)$, $1.082 .32(14 \mathrm{H}, \mathrm{m}), 2.32-3.21(4 \mathrm{H}, \mathrm{m}), 3.21-3.79(4 \mathrm{H}, \mathrm{m}), 3.71$ and $3.79(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{OMe}), 4.10-4.36(1 \mathrm{H}, \mathrm{br}$ s) and 6.61-7.63 (11 H, m) (Found: C, 73.6; H, 7.5; N, 2.5\%; M^{+}, 543.2985. $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{NO}_{5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 73.91 ; \mathrm{H}, 7.61 ; \mathrm{N}, 2.54 \% ; \mathrm{M}$, 543.298445).
(Ar)-O-Methyl-3,11-epi-lythranidine 12.-A solution of amido diacetate 10 ($140 \mathrm{mg}, 0.22 \mathrm{mmol}$) in anhydrous tetrahydrofuran (THF) $\left(5 \mathrm{~cm}^{3}\right)$ was added dropwise to a slurry of $\mathrm{LiAlH}_{4}(71 \mathrm{mg}, 1.87 \mathrm{mmol})$ in THF $\left(15 \mathrm{~cm}^{3}\right)$. The slurry was stirred under nitrogen for 18 h at room temperature after which
time the excess of LiAlH_{4} was destroyed by the addition of water (1 drop). The slurry was filtered through a plug of sand with the aid of diethyl ether $\left(500 \mathrm{~cm}^{3}\right)$. Solvent was removed and replaced with methanol ($20 \mathrm{~cm}^{3}$) and the substrate was hydrogenated over $5 \% \mathrm{Pd} / \mathrm{C}(41 \mathrm{mg})$ at atmospheric pressure for 18 h . The slurry was filtered through a plug of Celite with the aid of methanol and the solvent was removed under reduced pressure. Preparative TLC with 15% methanol- 3% triethylamine -82% ethyl acetate gave the product 12 ; crystallisation from ethyl acetate-light petroleum gave a powder ($53 \mathrm{mg}, 55 \%$), m.p. $135-139{ }^{\circ} \mathrm{C}$ (indistinct); $v_{\max }\left(\mathrm{KBr}\right.$ disc) $/ \mathrm{cm}^{-1} 3361,2934$, $1607,1500,1438,1364,1132,941,812$ and $748 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 1.10-2.37(16 \mathrm{H}, \mathrm{m}), 2.42-2.74(2 \mathrm{H}, \mathrm{m}), 2.74-3.00(2$ $\mathrm{H}, \mathrm{m}), 3.11-3.39(2 \mathrm{H}, \mathrm{m}), 3.71(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{OMe}), 3.50-3.95(4 \mathrm{H}$, $\mathrm{m})$ and $6.63-7.58(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right), 19.88$, $30.18,30.86,30.95,32.20,40.09,40.32$ and $42.86\left(8 \times \mathrm{CH}_{2}\right)$, 49.20 and $50.02(\mathrm{CHNCH}), 56.38(2 \times \mathrm{OMe}), 66.48$ and 67.57 $(\mathrm{CHOH}), 112.76$ and $112.91(2 \times \mathrm{CH}$ ortho to OMe$), 129.66$, 129.82, 132.09 and $133.87(4 \times$ arom CH$), 134.35$ and 135.08 (arom Cquat, biaryl) and $156.98(2 \times$ arom Cquat) (Found: $\mathrm{M}^{+}, 439.2723 . \mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{4}$ requires $\mathrm{M}, 439.272$ 235).

3,11-epi-Lythranidine 13.-A solution of amido diacetate $\mathbf{1 0}$ $(100 \mathrm{mg}, 0.16 \mathrm{mmol})$ in anhydrous toluene $\left(10 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was treated with DIBAL ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in toluene, $0.5 \mathrm{~cm}^{3}, 0.5$ mmol). The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then allowed to reach room temperature and was then stirred under nitrogen for 24 h . Excess of DIBAL was quenched by the addition of water and $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(1 \mathrm{~cm}^{3}\right)$. The aqueous phase was extracted with chloroform $\left(4 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic phase was dried over MgSO_{4}, filtered, and evaporated. TLC suggested that the product was the amido diol 11. The product was dissolved in anhydrous THF and added to a slurry of $\mathrm{LiAlH}_{4}(0.5 \mathrm{~g})$ in THF $\left(15 \mathrm{~cm}^{3}\right)$. The slurry was stirred overnight under nitrogen. Excess of LiAlH_{4} was destroyed with water. The resulting slurry was filtered through a plug of sand with the aid of diethyl ether. Solvent was removed under reduced pressure to give a yellow oil. This was taken up into methanol and hydrogenated over $5 \% \mathrm{Pd} / \mathrm{C}$ at room temperature for 4 h , after which time the slurry was filtered through a plug of Celite with the aid of methanol. Solvent was removed to give a yellow glass. Crystallisation from dichloro-methane-light petroleum gave an amorphous powder (52 mg); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.16-1.37(1 \mathrm{H}, \mathrm{m}), 1.37-2.00(12 \mathrm{H}, \mathrm{m})$, $2.00-2.10(2 \mathrm{H}, \mathrm{m}), 2.16-2.34(3 \mathrm{H}, \mathrm{m}), 2.53-2.76(2 \mathrm{H}, \mathrm{m}), 2.76-$ $3.00(2 \mathrm{H}, \mathrm{m}), 3.53-3.74(4 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{OMe}), 6.82(1 \mathrm{H}, \mathrm{m})$, $7.00(4 \mathrm{H}, \mathrm{m})$ and $7.18(1 \mathrm{H}, \mathrm{m})$ (Found: $\mathrm{M}^{+}, 428 . \mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{4}$ requires $\mathrm{M}, 428$).

Acknowledgements

We thank the SERC and Wellcome Research Laboratories (Berkhamsted) for a CASE award to P. C., and Dr. V. Sik, of Exeter University, for the $250 \mathrm{MHz}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

References

1 For a review, see E. Fujita and K. Fuji, International Review of Science, Organic Chemistry Series 2, ed. K. Wiesner, Butterworths, London, 1976, vol. 9, pp. 119-159.
2 K. Fuji, T. Yamada, E. Fujita and H. Murata, Chem. Pharm. Bull., 1978, 26, 2515
3 K. Fuji, K. Ichikawa and E. Fujita, J. Chem. Soc., Perkin Trans. I, 1980, 1066.
4 J. J. Tufariello, Acc. Chem. Res., 1979, 12, 396; 1.3-Dipolar Cycloaddition Chemistry, ed. A. Padwa, Wiley, 1984, vol. 2, p. 83; J. J. Tufariello and Sk. Asrof Ali, Tetrahedron Lett., 1978, 4647; Sk. Asrof Ali, P. A. Senaratne, C. R. Illig, H. Meckler and J. J. Tufariello, Tetrahedron Lett., 1979, 4167; E. Gossinger, Monatsch. Chem., 1981,

112, 1017; C. Hootele, W. Ibebeke-Bomangwa, F. Driessens and S. Sabil, Bull. Soc. Chim. Belg., 1987, 96, 57; W. Ibebeke-Bomangwa and C. Hootele, Tetrahedron, 1987, 43, 935; Sk. Asrof Ali and M. I. M. Wazeer, J. Chem. Soc., Perkin Trans. 1, 1988, 396.
5 W. Carruthers, P. Coggins and J. B. Weston, J. Chem. Soc., Perkin Trans. 1, 1990, in the press.
6 M. Sainsbury, Tetrahedron, 1980, 36, 3327.
7 P. E. Fanta, Synthesis, 1974, 9.
8 M. F. Semmelhack, P. M. Helquist and L. D. Jones, J. Am. Chem. Soc., 1971, 93, 5908; M. F. Semmelhack, P. M. Helquist, L. D. Jones, L. Keller, L. Mendelson, L. S. Ryono, J. G. Smith and R. D. Stauffer, J. Am. Chem. Soc., 1981, 103, 6460.

9 A. McKillop, J. D. Hunt, M. J. Zelesko, J. S. Fowler, E. C. Taylor, G. McGillivray and F. Kienzle, J. Am. Chem. Soc., 1971, 93, 4841.
10 R. K. Sharma and N. Kharasch, Angew. Chem., Int. Ed. Engl., 1968 7, 36.
11 O. Mitsunobu, Synthesis, 1981, 1.
12 J. Gutzwiller and M. Uskokovic, J. Am. Chem. Soc., 1970, 92, 204.
13 B. J. Hunt and W. Rigby, Chem. Ind. (London), 1967, 1869.
14 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.
Paper 0/04432F
Received 2nd October 1990
Accepted 31st October 1990

